Как AR Book совершенствует учебный процесс

AR Book — это прогрессивная система, которая воплощает самые современные технологии в сфере образования, внося радикальные изменения в методы обучения и оценки благодаря виртуальной реальности.

Megogo запускает новый раздел — Образование

В нем собраны более 1000+ лекций онлайн-школ и институтов для детей и взрослых. Сейчас пользователям предлагаются четыре основные темы: IT, бизнес и креатив, Образование для детей, Английский язык и Саморазвитие.

Примерные уроки по теме «Решение комбинаторных задач и теория вероятностей»

Педагогика » Методика обучения решению комбинаторных задач » Примерные уроки по теме «Решение комбинаторных задач и теория вероятностей»

Страница 7

Но как вы уже знаете, ответ на поставленный в вопрос можно получить, не выписывая сами числа и не строя дерево возможных вариантов. Рассуждать будем так. Первую цифру трехзначного числа можно выбрать четырьмя способами. Так после выбора первой цифры останутся три, то вторую цифру можно выбрать из оставшихся цифр уже тремя способами. Наконец, третью цифру можно выбрать (из оставшихся двух) двумя способами. Следовательно, общее число искомых трехзначных чисел равно произведению 4·3·2 = 24.

Ответ на поставленный в примере вопрос мы нашли, используя так называемое комбинаторное правило умножения

(записывается в тетрадь).

Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать n1 способами, после чего второй элемент можно выбрать из оставшихся n2 способами, затем третий элемент – n3 способами и т.д., то число способов, которыми могут быть выбраны все k элементов, равно произведению n1·n2·n3·…·nk.

В кафе предлагают два первых блюда: борщ, рассольник – и четыре вторых блюда: гуляш, котлеты, сосиски, пельмени. Укажите все обеды из двух блюд, которые может заказать посетитель. Проиллюстрируйте ответ, построив дерево возможных вариантов.

Решение:

Борщ

Рассольник

 

гуляш

котлеты

сосиски

пельмени

гуляш

котлеты

сосиски

пельмени

На первое место можно выбрать одно из двух блюд, на второе – одно из четырех блюд. Значит количество обедов из двух блюд: 2·4=8.

Ответ: 8 обедов.

Стадион имеет 4 входа: А, В, С и Д. укажите все возможные способы, какими посетитель может войти через один вход и выйти через другой. Сколько таких способов?

Решение: Посетитель может войти через один из четырех входа, а выйти через один из трех оставшихся, т.е. имеется 4·3=12 способов.

Ответ: 12 способов.

Из села Дятлово в село Матвеевское ведут три дороги, а из села Матвеевское в село Першино – четыре дороги. Сколькими способами можно попасть из Датлова в Першино через Матвеевское?

Решение: В село Матвеевское из Дятлова можно попасть тремя способами. А из Матвеевского в Першино – 4 способами. Значит, 3·4=12 способов.

Ответ: 12 способов.

Петр решил пойти на новогодний карнавал в костюме мушкетера. В ателье проката ему предложили на выбор различные по фасону и цвету предметы: пять пар брюк, шесть камзолов, три шляпы, две пары сапог. Сколько различных карнавальных костюмов можно составить из этих предметов?

Решение: Брюки можно выбрать пятью способами, камзолы – шестью, шляпы – тремя, сапоги – двумя. Значит, костюм можно составить 5·6·3·2=180 способами.

Ответ: 180 способов.

Введение новых знаний

Пример. Пусть имеются три книги. Обозначим их буквами a, b, c. Эти книги можно расставить на полке по-разному: abc, acb, bac, bca, cab, cba.

Каждое из этих расположений называют перестановкой из трех элементов.

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке.

Число перестановок из n элементов обозначается символом Pn (читается «Р из n»).

Мы установили, что Р3 = 6. Для того, чтобы найти число перестановок из трех элементов, можно не выписывать эти перестановки, а воспользоваться правилом умножения. Будем рассуждать так. На первое место можно поставить любой из трех элементов. Для каждого выбора первого элемента есть две возможности выбора второго из оставшихся двух элементов. Наконец, для каждого выбора первых двух элементов остается единственная возможность выбора третьего элемента. Значит, число перестановок из трех элементов равно 3·2·1, т.е. 6.

Страницы: 2 3 4 5 6 7 8 9 10 11

Более подробно о учебе:

Организация самостоятельной работы учащихся на уроках экономики в школе
Самостоятельная работа представляет особый вид любой учебной деятельности учащихся, осуществляемой под руководством, но без непосредственного участия учителя. Самостояте ...

«Элитарные» и «трудовые» школы
Основная функция учреждений образования – обеспечение процесса воспроизводства общественных отношений и систем жизнедеятельности. В новых условиях будет происходить посл ...

Просвещение в дагестане в первой половине хiх века
Русско-дагестанские связи восходят ко времени образования древнерусского государства. Их дальнейшее развитие происходило в условиях роста русского централизованного госу ...

Дефекты семейного воспитания

C того момента, как ребенок родился, и начал обживаться в мире, он начал обучаться. Обучаясь, ребенок постоянно воспитывается. Процесс воспитания направлен на формирование социальных качеств личности, на создание и расширение круга ее отношений к окружающему миру - к обществу, к людям, к самому себе. Чем шире, разнообразнее и глубже система отношений личности к различным сторонам жизни, тем богаче ее собственный духовный мир.

Самое интересное

Copyright © 2024 - All Rights Reserved - www.edutower.ru