Как AR Book совершенствует учебный процесс

AR Book — это прогрессивная система, которая воплощает самые современные технологии в сфере образования, внося радикальные изменения в методы обучения и оценки благодаря виртуальной реальности.

Megogo запускает новый раздел — Образование

В нем собраны более 1000+ лекций онлайн-школ и институтов для детей и взрослых. Сейчас пользователям предлагаются четыре основные темы: IT, бизнес и креатив, Образование для детей, Английский язык и Саморазвитие.

Примерные уроки по теме «Решение комбинаторных задач и теория вероятностей»

Педагогика » Методика обучения решению комбинаторных задач » Примерные уроки по теме «Решение комбинаторных задач и теория вероятностей»

Страница 3

а) выигрыш 3 млн. в лотерее;

б) камень, брошенный в воду, поплыл по реке;

в) выходишь на улицу, а навстречу идет слон;

г) летом у школьников будут каникулы;

д) на этой неделе выпадет снег.

Домашнее задание.

1. Возьмите две пуговицы – «с ножкой» и без нее. Оцените вероятность выпадения на каждую из сторон пуговиц, проведя 100 экспериментов с каждой пуговицей.

2. На 100 батареек попадают 3 бракованные. Какова вероятность купить бракованную батарейку?

Класс:

5 класс

Тема:

«Элементы комбинаторики».

Цель:

Сообщение новых знаний, формирование умения решать простейшие комбинаторные задачи.

Оборудование:

цветные треугольники и бумаги (синий, красный, зеленый, желтый).

Ход занятия.

Сообщение темы занятия и цели.

Ребята, сегодня мы с вами познакомимся с некоторыми комбинаторными задачами. К таким задачам относятся задачи на перебор всех возможных вариантов или подсчет таких вариантов. Например:

Задача 1.

Запишите все трехзначные числа цифрами 1, 2 и 3 без повторения. Сколько таких чисел?

Решение: Запишем числа в порядке возрастания: 123, 132, 213, 231,312, 321. здесь выписаны все числа, удовлетворяющие условию задачи, без пропусков и повторений. На первое место можно поставить любую из трех цифр, на второе место можно поставить только одну из двух оставшихся, т.е. имеется 3·2=6 возможностей занять два первых места. В каждом из этих шести случаев третье место займет оставшаяся цифра. Всего таким образом можно составить только 6 трехзначных чисел (рисунок 1.)

Задача 2.

Сколько двузначных чисел можно записать, используя цифры 1, 2 и 3?

Решение: в отличие от задачи 1 здесь можно повторять цифры. Чтобы ответить на вопрос задачи, можно выписать все числа без пропусков и повторений:

11 21 31

12 22 32

13 23 33

На первом месте может стоять одна из трех цифр: 1, 2 или 3. в каждом из этих трех случаев на второе место можно поставить одну из трех цифр 1, 2 или 3. Итого, имеется 3·3=9 двузначных чисел, записанных цифрами 1, 2 и 3.

Практическая часть.

Раздаются цветные треугольники из бумаги: синий, желтый, зеленый, красный.

- Ребята, а теперь давайте посмотрим какие и сколько можно составить елочек из предложенных треугольников, не повторяя цвета?

Ответ: 24 елочки.

Учащиеся раскладывают на партах елочки. Результаты оформляются на доске и в тетрадях (рис. 2).

- Ребята, а теперь давайте решим задачу. Коля написал два раза свое имя

К О Л Я

К О Л Я

Его сосед по парте заметил, что Коля может прочитать свое имя более 10 раз, и показал один из способов.

К–О Л Я

К О Л–Я

Сколькими способами Коля может прочитать свое имя?

Решение: К каждой букве О можно прийти двумя способами, к каждой букве Л – четырьмя способами, к каждой букве Я – восемью, а всего прочитать слово можно шестнадцатью способами.

К О

2 Л

4 Я

8

К О

2 Л

4 Я

8

Задача.

Бросили два игральных кубика. На первом выпало 2 очка, на втором 6 очков. Сколькими различными способами может выпасть 8 очков на этих кубиках?

Решение: Рассмотрим варианты, когда может выпасть 8 очков: 2×6, 3×5, 4×4, 5×3, 6×2. Мы видим, что 8 очков может выпасть пятью способами.

Задача.

Восемь друзей решили провести турнир по шашкам так, чтобы каждый сыграл с каждым одну партию. Сколько партий будет сыграно?

Решение: Каждый игрок должен сыграть по 7 партий. Рассмотрим случаи, когда игроки не повторяются. Первый должен сыграть 7 партий (со 2, 3, 4, 5, 6, 7, 8 игроками), второй – 6 партий (с 3, 4, 5, 6, 7, 8 игроками), третий – 5 партий (с 4, 5, 6, 7, 8 игроками), четвертый – 4 партии (с 5, 6, 7, 8 игроками), пятый – 3 партии (с 6, 7, 8 игроками), шестой – 2 партии (с 7, 8 игроками), седьмой – 1 партия (с 8-м игроком). Отсюда, количество партий: 7+6+5+4+3+2+1=28.

- Ребята, сегодня мы с вами изучили некоторые элементы комбинаторики, решили задачи на перебор всех возможных вариантов.

Домашнее задание:

Запишите все трехзначные числа, используя цифры 0, 3, 5, 9 с повторением, без повторений.

Страницы: 1 2 3 4 5 6 7 8

Более подробно о учебе:

Организация самостоятельной работы учащихся на уроках экономики в школе
Самостоятельная работа представляет особый вид любой учебной деятельности учащихся, осуществляемой под руководством, но без непосредственного участия учителя. Самостояте ...

«Элитарные» и «трудовые» школы
Основная функция учреждений образования – обеспечение процесса воспроизводства общественных отношений и систем жизнедеятельности. В новых условиях будет происходить посл ...

Просвещение в дагестане в первой половине хiх века
Русско-дагестанские связи восходят ко времени образования древнерусского государства. Их дальнейшее развитие происходило в условиях роста русского централизованного госу ...

Дефекты семейного воспитания

C того момента, как ребенок родился, и начал обживаться в мире, он начал обучаться. Обучаясь, ребенок постоянно воспитывается. Процесс воспитания направлен на формирование социальных качеств личности, на создание и расширение круга ее отношений к окружающему миру - к обществу, к людям, к самому себе. Чем шире, разнообразнее и глубже система отношений личности к различным сторонам жизни, тем богаче ее собственный духовный мир.

Самое интересное

Copyright © 2024 - All Rights Reserved - www.edutower.ru