Как AR Book совершенствует учебный процесс

AR Book — это прогрессивная система, которая воплощает самые современные технологии в сфере образования, внося радикальные изменения в методы обучения и оценки благодаря виртуальной реальности.

Megogo запускает новый раздел — Образование

В нем собраны более 1000+ лекций онлайн-школ и институтов для детей и взрослых. Сейчас пользователям предлагаются четыре основные темы: IT, бизнес и креатив, Образование для детей, Английский язык и Саморазвитие.

Сборник основных правил комбинаторики и упражнений для их применения

Педагогика » Методика обучения решению комбинаторных задач » Сборник основных правил комбинаторики и упражнений для их применения

Страница 3

Решение: Так как запись числа не может начинаться с нуля, то цифру сотен можно выбрать пятью способами; выбор можно также осуществить пятью способами, поскольку цифры в записи числа не должны повторяться, а одна из шести цифр будет уже использована для записи сотен; после выбора двух цифр (для записи сотен и десятков) выбрать цифру единиц из данных шести можно четырьмя способами. Отсюда, по правилу произведения, получаем, что трехзначных чисел можно образовать 5·5·4 = 100 способами.

У Ирины пять подруг: Вера, Зоя, Марина, Полина и Светлана. Она решила двух из них пригласить в кино укажите все возможные варианты выбора подруг. Сколько таких вариантов?

Сколько можно составить пар, выбирая:

а) первый предмет из 4, а второй из 8;

б) первый предмет из 6, а второй из 3;

в) первый предмет из 15, а второй из 12;

В школе есть все классы с 1 по 11. каждый из них имеет дополнительную букву «а», «б», «в», «г» или «д». сколько всего классов в этой школе?

на каждом барабане игрального автомата изображены символы: «вишня», «лимон» и числа от 1 до 9. автомат имеет три одинаковых барабана, которые вращаются независимо друг от друга. Сколько всего комбинаций может выпасть?

Первый класс праздновал Новый год. Каждая девочка подарила каждому мальчику открытку, а каждый мальчик подарил каждой девочке гвоздику. Чего было больше – подаренных открыток или подаренных гвоздик?

Стадион имеет 4 входа: А, В, С и Д. укажите все возможные способы, какими посетитель может войти через один вход и выйти через другой. Сколько таких способов?

Укажите все способы, какими можно разложить три яблока в две вазы (учтите при этом случаи, когда одна из ваз окажется пустой).

Составьте все возможные двузначные числа, используя в записи указанные цифры не более одного раза:

а) 1, 6, 8; б)0, 3, 4.

Из цифр 1, 2, 3 составьте все возможные двузначные числа при условии, что:

а) цифры в числе не повторяются;

б) допускается повторение цифр в числе.

Используя цифры 0, 2, 4, 6, составьте все возможные трехзначные числа, в которых цифры не повторяются.

В шахматном турнире участвуют 9 человек. Каждый из них сыграл с каждым по одной партии. Сколько всего партий было сыграно?

В соревнованиях по футболу участвовало 12 команд. Каждая команда провела с каждой из остальных по одной игре на своем поле и по одной игре на поле соперника. Сколько всего игр было сыграно?

При встрече 8 человек обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Учащиеся 6 класса решили обменяться фотографиями. Сколько фотографий для этого потребуется, если в классе 24 человека?

На входной двери дома установлен домофон, на котором нанесены цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. каждая квартира получает кодовый замок из двух цифр типа 0-2, 3-7, 7-3, 8-8 и т.п., позволяющий открывать входную дверь. Хватит ли кодовых замков для всех квартир дома, если в доме 96 квартир?

Из села Дятлово в село Матвеевское ведут три дороги, а из села Матвеевское в село Першино – четыре дороги. Сколькими способами можно попасть из Датлова в Першино через Матвеевское?

В кафе имеются три первых блюда, пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать ответ, состоящий из первого, второго и третьего блюд?

Решение. Первое блюдо можно выбрать 3 способами. Для каждого выбора первого блюда существует 5 возможностей выбора второго блюда. Значит, первые два блюда можно выбрать 3·5 способами. Наконец, для каждого выбора третьего блюда, т.е. существует 3·5·2 способов составления обеда из трех букв. Итак, обед из трех букв может быть составлен 30 способами.

Петр решил пойти на новогодний карнавал в костюме мушкетера. В ателье проката ему предложили на выбор различные по фасону и цвету предметы: пять пар брюк, шесть камзолов, три шляпы и две пары сапог. Сколько различных карнавальных костюмов можно составить из этих предметов?

Перестановки

Простейшими комбинациями, которые можно составить из элементов конечного множества являются перестановки

.

Рассмотрим пример 1

. Пусть имеются три книги. Обозначим их буквами a, b, c. Эти книги можно расставить на полке по-разному:

abc, acb, bac, bca, cab, cba.

Каждое из этих расположений называют перестановкой из трех элементов.

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке.

Число перестановок из n элементов обозначается символом Pn (читается «Р из n»).

Мы установили, что Р3 = 6. для того, чтобы найти число перестановок из трех элементов, можно не выписывать эти перестановки, а воспользоваться правилом умножения. Будем рассуждать так. На первое место можно поставить любой из трех элементов. Для каждого выбора первого элемента есть две возможности выбора второго из оставшихся двух элементов. Наконец, для каждого выбора первых двух элементов остается единственная возможность выбора третьего элемента. Значит, число перестановок из трех элементов равно 3·2·1, т.е. 6.

Страницы: 1 2 3 4 5 6 7 8

Более подробно о учебе:

Организация самостоятельной работы учащихся на уроках экономики в школе
Самостоятельная работа представляет особый вид любой учебной деятельности учащихся, осуществляемой под руководством, но без непосредственного участия учителя. Самостояте ...

«Элитарные» и «трудовые» школы
Основная функция учреждений образования – обеспечение процесса воспроизводства общественных отношений и систем жизнедеятельности. В новых условиях будет происходить посл ...

Просвещение в дагестане в первой половине хiх века
Русско-дагестанские связи восходят ко времени образования древнерусского государства. Их дальнейшее развитие происходило в условиях роста русского централизованного госу ...

Дефекты семейного воспитания

C того момента, как ребенок родился, и начал обживаться в мире, он начал обучаться. Обучаясь, ребенок постоянно воспитывается. Процесс воспитания направлен на формирование социальных качеств личности, на создание и расширение круга ее отношений к окружающему миру - к обществу, к людям, к самому себе. Чем шире, разнообразнее и глубже система отношений личности к различным сторонам жизни, тем богаче ее собственный духовный мир.

Самое интересное

Copyright © 2024 - All Rights Reserved - www.edutower.ru